11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


dm.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall/Spring
Prerequisites
None
Course Language
Course Type
Elective
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course Problem Solving
Simulation
Application: Experiment / Laboratory / Workshop
Course Coordinator
Course Lecturer(s)
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Process images using techniques of smoothing, sharpening, histogram processing, and filtering,
  • Explain sampling and quantization processes in obtaining digital images from continuously sensed data,
  • Enhance digital images using filtering techniques in the spatial domain,
  • Enhance digital images using filtering techniques in the frequency domain,
  • Restore images in the presence of only noise through filtering techniques,
  • Explain most commonly applied color models and their use in basic color image processing,
  • Familiarize with Matlab and image processing toolbox.
Course Description

 



Course Category

Core Courses
Major Area Courses
Supportive Courses
X
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Introduction. What is Digital Image Processing? Application areas of digital image processing Chapter 1. Sections 1.11.3. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
2 Digital Image Fundamentals. How digital images are generated? Sampling, quantization, aliasing, Moire patterns, image zooming and shrinking Chapter 1&2. Sections 1.4,1.5, 2.12.4. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
3 Digital Image Fundamentals. How digital images are generated? Sampling, quantization, aliasing, Moire patterns, image zooming and shrinking Chapter 1&2. Sections 1.4,1.5, 2.12.4. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
4 Human visual system Chapter 2. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
5 Image Enhancement in the spatial domain. Basic gray level transformations. Smoothing and sharpening spatial filters. Chapter 3. Sections 3.13.6. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
6 Image Enhancement in the spatial domain. Histogram processing. Chapter 3. Sections 3.13.6. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
7 The 2D Discrete Fourier Transform and Its Inverse, Properties of the 2D DFT and the 2D Convolution Theorem Chapter 4. Sections 4.5.5, 4.6. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
8 The 2D Discrete Fourier Transform and Its Inverse, Properties of the 2D DFT and the 2D Convolution Theorem Chapter 4. Sections 4.5.5, 4.6. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
9 Image Enhancement in the frequency domain. Chapter 4. Sections 4.74.10. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
10 Image Enhancement in the frequency domain. Chapter 4. Sections 4.74.10. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
11 Image restoration: system model, noise model, estimation of degradation function. Chapter 5. Sections 5.1,5.2,5.75.10. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
12 Image restoration in the presence of noise only, inverse filtering, minimum mean square error (Wiener) filtering. Chapter 5. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
13 Color Image Processing. Color transformations. Color image smoothing and sharpening Chapter 6. Section 6.16.6. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
14 Color Image Processing. Color transformations. Color image smoothing and sharpening Chapter 6. Section 6.16.6. Digital Image Processing. Gonzalez & Woods. ISBN 013168728X
15 Review for Final exam
16 Review of the Semester  
Course Notes/Textbooks R. C. Gonzalez and R. E. Woods, “Digital Image Processing”, PrenticeHall, 3rd Ed., 2008, ISBN 013168728X.
Suggested Readings/Materials R. C. Gonzalez, R. E. Woods, S. L. Eddins, “Digital Image Processing Using MATLAB”, PrenticeHall, 2nd Ed., 2009, ISBN 9780982085400.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
Laboratory / Application
Field Work
Quizzes / Studio Critiques
2
10
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterm
1
25
Final Exam
1
25
Total

Weighting of Semester Activities on the Final Grade
75
Weighting of End-of-Semester Activities on the Final Grade
25
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
3
48
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
Study Hours Out of Class
15
2
Field Work
Quizzes / Studio Critiques
2
2
Portfolio
Homework / Assignments
Presentation / Jury
Project
Seminar / Workshop
Oral Exam
Midterms
1
8
Final Exams
1
10
    Total
100

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1 To have a grasp of basic mathematics, applied mathematics and theories and applications of statistics.
2 To be able to use theoretical and applied knowledge acquired in the advanced fields of mathematics and statistics,
3 To be able to define and analyze problems and to find solutions based on scientific methods,
4 To be able to apply mathematics and statistics in real life with interdisciplinary approach and to discover their potentials, X
5 To be able to acquire necessary information and to make modeling in any field that mathematics is used and to improve herself/himself, X
6 To be able to criticize and renew her/his own models and solutions,
7 To be able to tell theoretical and technical information easily to both experts in detail and nonexperts in basic and comprehensible way,
8

To be able to use international resources in English and in a second foreign language from the European Language Portfolio (at the level of B1) effectively and to keep knowledge up-to-date, to communicate comfortably with colleagues from Turkey and other countries, to follow periodic literature,

9

To be familiar with computer programs used in the fields of mathematics and statistics and to be able to use at least one of them effectively at the European Computer Driving Licence Advanced Level,

X
10

To be able to behave in accordance with social, scientific and ethical values in each step of the projects involved and to be able to introduce and apply projects in terms of civic engagement,

11 To be able to evaluate all processes effectively and to have enough awareness about quality management by being conscious and having intellectual background in the universal sense,
12

By having a way of abstract thinking, to be able to connect concrete events and to transfer solutions, to be able to design experiments, collect data, and analyze results by scientific methods and to interfere,

13

To be able to continue lifelong learning by renewing the knowledge, the abilities and the compentencies which have been developed during the program, and being conscious about lifelong learning,

14

To be able to adapt and transfer the knowledge gained in the areas of mathematics and statistics to the level of secondary school,

15

To be able to conduct a research either as an individual or as a team member, and to be effective in each related step of the project, to take role in the decision process, to plan and manage the project by using time effectively.

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010